CD4+FoxP3+ Regulatory T Cells Regulate B Cell Differentiation and Induce Tolerance to Bone Marrow Grafts

2014 
CD4+FoxP3+ regulatory T cells (Treg) are a rare cell population that is responsible for peripheral immune tolerance. Treg adoptive transfer has proved to be an effective treatment for graft versus host disease prevention in several preclinical and clinical studies. The impact of Treg on immune reconstitution and bone marrow engraftment after transplantation has been less well studied. We treated C57BL/6 FoxP3-DTR mice that carry the diphtheria toxin (DT) receptor in the promoter of the FoxP3 gene with DT resulting in a complete ablation of Treg (percentage of FoxP3+CD4+ cells over CD4+ cells in vitro activated with Interleukin-2 (IL-2) and anti-CD3/CD28 beads to DT treated mice rescued engraftment (p We explored the mechanism through which Treg impact donor engraftment and immune reconstitution and observed that Treg depleted mice transplanted with syngeneic (C57BL/6 CD45.1) TCD BM engrafted (p > 0.05) but had markedly delayed B cell reconstitution (p -/- γc -/- mice that received an infusion of allogeneic (C57BL/6) TCD BM. Bone marrow analysis of these mice revealed higher numbers of B220+IgM-CD19+cKit+ Pro-B cells (p In conclusion, our findings clearly indicate that Treg act as a key regulator of B cell differentiation promoting production of mature B cells. This effect is not dependent on alloantigen recognition and Treg localization after transplantation suggests that Treg play a role in building the donor HSC and B cell precursor niche. Finally, adoptive transfer of Treg enhances B cell immune reconstitution and induces tolerance to allogeneic bone marrow grafts even in the absence of conditioning providing a new tool for clinical translation in children with severe combined immune deficiencies or hemoglobinopathies and in patients undergoing organ transplantation. Disclosures No relevant conflicts of interest to declare.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []