NMDA receptor blockade causes selective prefrontal disinhibition in a roving auditory oddball paradigm

2017 
N-methyl-D-aspartate receptors (NMDARs) are expressed widely throughout the human cortex. Yet disturbances in NMDAR transmission - as implicated in patients with schizophrenia or pharmacologically induced - can cause a regionally specific set of electrophysiological effects. Here, we present a double-blind placebo-controlled study of the effects of the NMDAR blocker ketamine in human volunteers. We employ a marker of auditory learning and putative synaptic plasticity - the mismatch negativity - in a roving auditory oddball paradigm. Using recent advances in Bayesian modelling of group effects in dynamic causal modelling, we fit biophysically plausible network models of the auditory processing hierarchy to whole-scalp evoked response potential recordings. This allowed us to identify the regionally specific effects of ketamine in a distributed network of interacting cortical sources. Under placebo, our analysis replicated previous findings regarding the effects of stimulus repetition and deviance on connectivity within the auditory hierarchy. Crucially, we show that the effect of ketamine is best explained as a selective change in intrinsic inhibition, with a pronounced ketamine-induced reduction of inhibitory interneuron connectivity in frontal sources. These results are consistent with findings from invasive recordings in animal models exposed to NMDAR blockers, and provide evidence that inhibitory-interneuron specific NMDAR dysfunction may be sufficient to explain electrophysiological abnormalities of sensory learning induced by ketamine in human subjects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    4
    Citations
    NaN
    KQI
    []