Chemometrics in forensic chemistry — Part I: Implications to the forensic workflow

2019 
Abstract The forensic literature shows a clear trend towards increasing use of chemometrics (i.e. multivariate analysis and other statistical methods). This can be seen in different disciplines such as drug profiling, arson debris analysis, spectral imaging, glass analysis, age determination, and more. In particular, current chemometric applications cover low-dimensional (e.g. drug impurity profiles) and high-dimensional data (e.g. Infrared and Raman spectra) and are therefore useful in many forensic disciplines. There is a dominant and increasing need in forensic chemistry for reliable and structured processing and interpretation of analytical data. This is especially true when classification (grouping) or profiling (batch comparison) is of interest. Chemometrics can provide additional information in complex crime cases and enhance productivity by improving the processes of data handling and interpretation in various applications. However, the use of chemometrics in everyday work tasks is often considered demanding by forensic scientists and, consequently, they are only reluctantly used. This article and following planned contributions are dedicated to those forensic chemists, interested in applying chemometrics but for any reasons are limited in the proper application of statistical tools — usually made for professionals — or the direct support of statisticians. Without claiming to be comprehensive, the literature reviewed revealed a sufficient overview towards the preferably used data handling and chemometric methods used to answer the forensic question. With this basis, a software tool will be designed (part of the EU project STEFA-G02) and handed out to forensic chemist with all necessary elements of data handling and evaluation. Because practical casework is less and less accompanied from the beginning to the end out of the same hand, more and more interfaces are built in through specialization of individuals. This article presents key influencing elements in the forensic workflow related to the most meaningful chemometric application and evaluation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    19
    Citations
    NaN
    KQI
    []