Effect of Annealing on Ag-doped Submicron Silica Powder Prepared with Modified Stöber Method

2011 
Antibacterial silver can be used against such micro-organisms as bacteria and molds. When Ag nanoparticles are attached to an inorganic carrier, e.g., silica long-term antimicrobial functionality can be gained. Such Ag-SiO2 particles are potential for water purification or bactericidal applications. In this work, submicron sized silica particles doped with Ag were prepared by the modified Stober method. The as-prepared powder was air-dried and annealed for 75 minutes at 573, 673, 773, 873, 973, 1073, 1173, or 1273 K in air. The powders were studied by DSC/TGA, XRD, SEM, TEM and UV-vis methods. The as-prepared powder consisted of round silica particles having size around several hundred nanometers. XRD and SEM studies confirmed that the powder consisted of metallic silver nanoparticles on the submicron silica surface after annealing at 873 K or higher. According to the SEM study the silver particles had an average particle size between 19-400 nm depending on the annealing temperature. DSC was used to determine the phase transformation temperatures. After annealing the Ag-SiO2 powder at 873 K the TEM study suggested that the silver had crystalline structure. The XRD studies confirmed that silver appeared as a FCC crystal structure. The UV-vis measurements of Ag-SiO2 powder annealed at and below 773 K showed a steady increase in absorption with decreasing wavelength without absorption peaks. Annealing at 873 K and above resulted in a strong peak in between 404 nm and 416 nm. This peak can be attributed to the surface plasmon resonance of silver nanoparticles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    5
    Citations
    NaN
    KQI
    []