Exact mean computation in dynamic time warping spaces

2019 
Averaging time series under dynamic time warping is an important tool for improving nearest-neighbor classifiers and formulating centroid-based clustering. The most promising approach poses time series averaging as the problem of minimizing a Frechet function. Minimizing the Frechet function is NP-hard and so far solved by several heuristics and inexact strategies. Our contributions are as follows: we first discuss some inaccuracies in the literature on exact mean computation in dynamic time warping spaces. Then we propose an exponential-time dynamic program for computing a global minimum of the Frechet function. The proposed algorithm is useful for benchmarking and evaluating known heuristics. In addition, we present an exact polynomial-time algorithm for the special case of binary time series. Based on the proposed exponential-time dynamic program, we empirically study properties like uniqueness and length of a mean, which are of interest for devising better heuristics. Experimental evaluations indicate substantial deficits of state-of-the-art heuristics in terms of their output quality.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    18
    Citations
    NaN
    KQI
    []