1H and 15N resonance assignments and solution secondary structure of oxidized Desulfovibrio vulgaris flavodoxin determined by heteronuclear three-dimensional NMR spectroscopy

1993 
Sequence-specific 1H and 15N resonance assignments have been made for all 145 non-prolyl residues and for the flavin cofactor in oxidized Desulfovibrio vulgaris flavodoxin. Assignments were obtained by recording and analyzing 1H−15N heteronuclear three-dimensional NMR experiments on uniformly 15N-enriched protein, pH 6.5, at 300 K. Many of the side-chain resonances have also been assigned. Observed medium-and long-range NOEs, in combination with 3JNHα coupling constants and 1HN exchange data, indicate that the secondary structure consists of a five-stranded parallel β-sheet and four α-helices, with a topology identical to that determined previously by X-ray crystallographic methods. One helix, which is distorted in the X-ray structure, is non-regular in solution as well. Several protein-flavin NOEs, which serve to dock the flavin ligand to its binding site, have also been identified. Based on fast-exchange into 2H2O, the 1HN3 proton of the isoalloxazine ring is solvent accessible and not strongly hydrogen-bonded in the flavin binding site, in contrast to what has been observed in several other flavodoxins. The resonance assignments presented here can form the basis for assigning single-site mutant flavodoxins and for correlating structural differences between wild-type and mutant flavodoxins with altered redox potentials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    11
    Citations
    NaN
    KQI
    []