Shape memory effect of nano-ferromagnetic particle doped NiTi for orthopedic devices and rehabilitation techniques

2017 
This paper introduces a novel shape memory alloy (SMA) material for the controllability in the shape recovery of traditional SMA for orthopedic devices and rehabilitation techniques. The proposed material is formed by doping nano-ferromagnetic particle into porous NiTi alloy. The finite element analysis of shape memory effect property of the different distribution of nano-ferromagnetic particle is done and compared for same load and boundary conditions. The comparative analysis of the percentage change in volume deformation when load is released (for 2 nd step) shows an average of 2.55 % with standard deviation of 1.69 whereas on thermal loading (for 3 rd step) shows an average of 94.94% with standard deviation of 7.75 for all heterogeneous distribution of nano-particles in porous NiTi alloy. Our findings are, all the different conditions of heterogeneous distributions of nano-ferromagnetic particle doped NiTi alloy exhibits its inherent SME property.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    2
    Citations
    NaN
    KQI
    []