Gearbox Fault Diagnosis Using Multiscale Sparse Frequency-Frequency Distributions

2021 
Gear fault related information is distributed over a broad frequency band, indicating a complex modulation mechanism. It is difficult to detect early-stage gear faults accurately by detecting fault frequencies in a limited frequency band. This paper proposes a novel method for achieving fault frequency detection more effectively. A short-frequency Fourier transform with a series of frequency-window functions is initially used to obtain the overall frequency information of a vibration signal. Subsequently, based on sparse decomposition and orthogonal matching pursuit, harmonic atoms are applied to refine modulation components from multiscale pseudo mono-components. A multiscale-sparse frequency-frequency distribution is eventually applied to augment existing fault-related harmonic components. In addition, a synthesized sparse spectrum is acquired by determining the frequency-frequency ridge from the multiscale sparse frequency-frequency distribution. Compared with empirical-mode-decomposition and fast-kurtogram analyses, the effectiveness and superiority of the proposed method for gear fault detection have been verified via experiments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    0
    Citations
    NaN
    KQI
    []