Application of support vector machines in the evaluation of reliability generation and transmission systems; Aplicacao de maquinas de vetores suporte na avaliacao da confiabilidade de sistemas de geracao e transmissao

2010 
This paper presents a methodology for assessing the reliability indices for composite generation and transmission systems based on Support Vector Machines (SVM). The importance of SVMs is its high generalization ability. The SVMs are used to classify data into two distinct classes. These can be named positive and negative. Thus, the basic idea is to classify the system states into success or failure. For this, a pre-classification of states is achieved by performing the proposed SVM-based neural network, where the sampled states during the beginning of the non-sequential Monte Carlo simulation (MCS) are considered as input data for training and validation sets. By adopting this procedure, a large number of states are classified by a simple evaluation of the network, providing significant reductions in computational costs. The proposed methodology is applied to the IEEE Reliability Test System and to the IEEE Modified Reliability Test System. (author)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []