Differential regulation and production of secondary metabolites among isolates of the fungal wheat pathogen Zymoseptoria tritici

2021 
The genome of the wheat pathogenic fungus, Zymoseptoria tritici, represents extensive presence-absence variation in gene content. Here, we addressed variation in biosynthetic gene clusters (BGCs) content and biochemical profiles among three isolates. We analysed secondary metabolite properties based on genome, transcriptome and metabolome data. The isolates represent highly distinct genome architecture, but harbor similar repertoire of BGCs. Expression profiles for most BGCs show comparable patterns of regulation among the isolates, suggesting a conserved "biochemical infection program". For all three isolates, we observed a strong up-regulation of an abscisic acid (ABA) gene cluster during biotrophic host colonization, indicating that Z. tritici potentially interfere with host defenses by the biosynthesis of this phytohormone. Further, during in vitro growth the isolates show similar metabolomes congruent with the predicted BGC content. We assessed if secondary metabolite production is regulated by histone methylation using a mutant impaired in formation of facultative heterochromatin (H3K27me3). In contrast to other ascomycete fungi, chromatin modifications play a less prominent role in regulation of secondary metabolites. In summary, we show that Z. tritici has a conserved program of secondary metabolite production contrasting the immense variation in effector expression, some of these metabolites might play a key role during host colonization. Originality-Significance StatementZymoseptoria tritici is one of the most devastating pathogens of wheat. So far the molecular determinants of virulence and their regulation are poorly understood. Previous studies have focused on proteinasous virulence factors and their extensive diversity. In this study, we focus on secondary metabolites produced by Z. tritici. Using a comparative framework, we here characterize core and non-core metabolites produced by Z. tritici by combining genome, transcriptome and metabolome datasets. Our findings indicate highly conserved biochemical profiles contrasting genetic and phenotypic diversity of the field isolates investigated here. This discovery has relevance for future crop protection strategies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    82
    References
    0
    Citations
    NaN
    KQI
    []