Study on the Thermal Environment Inside a Fully-Enclosed Subway Noise Barrier

2020 
The thermal environment inside a fully-enclosed subway noise barrier shall be designed according to underground section tunnel standards. This article constructs a model using practical examples, simulates calculations on fully-enclosed noise barrier installations both with and without air vents via a threedimensional numerical simulation method, and then conducts a comparative analysis of the effects noise barrier lengths and air vent widths have on an internal thermal environment. The calculation results show that when the length of the fully-enclosed noise barrier without air vents was 100m, the internal thermal environment exceeded the limit; as the width of the air vents increased, the temperature in the internal environment gradually decreased, but the reduction was less once the air vent width exceeded 2 m; When the top air vent width was 2 m, and the noise barrier length was 100m, the thermal environment was found to meet requirements. As the noise barrier length increased, the internal air temperature exceeded the standards by varying degrees.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []