Migratory behavior of cells on embryonic retina basal lamina
1988
Abstract In order to study cell translocation in vitro on a physiological substrate a novel cell migration assay was developed using the inner limiting membrane of the avian embryonic retina. The matrix sheet consists of a laminin-rich basal lamina covered by a dense layer of neuroepithelial endfeet. The retina basal lamina does not contain fibronectin. Cells translocating on this substrate displace the neuroepithelial endfeet, leaving behind tracks in the endfeet monolayer. Motility of cells and the relative foward to lateral migration can be quantitated by measuring lengths, widths, and areas of the tracks. Using this assay system, the conditions and patterns of cell migration for a variety of cells have been examined. In the absence of serum all cell types show only minor migratory activity and addition of serum to the culture medium always enhances the rate of cell migration in a saturable, dose-response manner. The serum cannot be replaced by fibronectin or vitronectin (serum spreading factor). For maximum cell migration, serum has to be constantly present in the medium; however, 58% cell migration is obtained in serum-free medium when the matrix is preincubated with serum. According to the area and linearity of the tracks, the migratory behavior of the different cells can be classified into three groups: (i) fibroblasts and the nonpigmented Bowes melanoma cells form straight and long tracks; (ii) glioma, sarcoma, and carcinoma cells from straight but short tracks, and (iii) neuronal tumor cells, epithelial cells, and pigmented B16 melanoma cells form wide and short tracks. Comparative studies with low and high metastatic clones of tumorgenic cell lines show that migratory activity and metastatic potential of cells do not necessarily correlate. Finally, we show that fibroblasts deposit fibronectin fibrils on their paths as they migrate on the basal lamina. Fibronectin trails are also seen when fibroblasts are cultured on plain basal laminae that are pretreated with detergent to remove the endfeet monolayer. Likewise, when fibroblasts are cultured in the presence of antifibronectin antibodies, the fibronectin secreted by cells is detectable. Due to antibody treatment the cellular fibronectin is precipitated and its normal fibril formation is inhibited; however, the translocation of fibroblasts is not impaired.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
50
References
20
Citations
NaN
KQI