Boron-Doped TiO2-CNT Nanocomposites with Improved Photocatalytic Efficiency toward Photodegradation of Toluene Gas and Photo-Inactivation of Escherichia coli

2020 
An in-situ sol-gel method was used for the synthesis of boron-doped TiO2-CNT nanocomposites with varied boron concentrations from 1 to 4 mol%. The synthesized nanocomposites were characterized by various techniques, namely XRD, UV-DRS, TEM, PL, and XPS; all results show that 3 mol% B-TiO2-CNT nanocomposites have superior properties to pure TiO2, 3B-TiO2 nanoparticles, and other nanocomposites. TEM images clearly show the B-TiO2 nanoparticles decorated on the CNT surface. Photo-luminescence studies confirm that boron doping of up to 3 mol% in TiO2-CNT nanocomposites reduces the electron-hole pair recombination rate. The photocatalytic performance of the B-TiO2-CNT nanocomposites was tested against the photodegradation of toluene gas and the photocatalytic inactivation of E. coli in the presence of UV and visible light respectively. B-TiO2-CNT (3 mol%) nanocomposites show the highest photocatalytic activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    4
    Citations
    NaN
    KQI
    []