Evaluation of the Communication Between Arachnoid Cysts and Neighboring Cerebrospinal Fluid Spaces by T2W 3D-SPACE With Variant Flip-Angle Technique at 3 T

2018 
PURPOSE: Phase-contrast cine magnetic resonance imaging (PC-MRI) is a widely used technique for determination of possible communication of arachnoid cysts (ACs). Three-dimensional (3D) sampling perfection with application-optimized contrasts using different flip-angle evolutions (3D-SPACE) technique is a relatively new method for 3D isotropic scanning of the entire cranium within a short time. In this research, the usage of the 3D-SPACE technique in differentiation of communicating or noncommunicating type ACs was evaluated. MATERIALS AND METHODS: Thirty-five ACs in 34 patients were retrospectively examined. The 3D-SPACE, PC-MRI, and contrast material-enhanced cisternography (if present) images of the patients were analyzed. Each cyst was described according to cyst size/location, third ventricle diameter, Evans index, and presence of hydrocephalus. Communication was defined as absent (score 0), suspected (score 1), or present (score 2) on each sequence. Results of PC-MRI or cisternography (if available) examinations were used as criterion standard techniques to categorize all cysts as communicating or noncommunicating type. The results of 3D-SPACE were compared with criterion standard techniques. The comparisons between groups were performed using Mann-Whitney and Fisher exact tests. RESULTS: For demonstration of communication status of the cysts, criterion standard test results and 3D-SPACE findings were almost in perfect harmony (κ[95% confidence interval: 0.94]; P < 0.001). When evaluating the communicative properties, 3D-SPACE findings correlated with other final results at a rate of 97%. There is a positive correlation with third ventricular diameters and Evans index for all patients (r = 0.77, P < 0.001). For other analyzed variables, there is no significant difference or correlation between the groups. CONCLUSIONS: The 3D-SPACE technique is an easy, useful, and noninvasive alternative for the evaluation of morphology, topographical relationships, and communication status of ACs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    1
    Citations
    NaN
    KQI
    []