Solución en dominios cuadrados de ecuaciones de difusión-convección mediante elementos finitos estocásticos espectrales en conjunto con el método de Petrov Galerkin en contracorrienteSolution on square domains of reaction-convection-diffusion equations using spectral stochastic finite element and streamline upwind Galerkin Petrov

2013 
In this paper we have developed the numerical solution of two problems of diffusion-convection (DC), using the finite element method of Streamline Upwind Petrov-Galerkin (SUPG). The parameters that define the behavior of the equations are modeled as stochastic fields, specifically, are used: the convective velocity, diffusion and heat capacity as values of random type. Therefore, we have included SUPG method to DC, with dominant convection, with the stochastic spectral finite element method. Each parameter was described by Karhunen-Loeve expansion, while the unknown is represented by the polynomial expansion of the chaos. The objectives of the paper are: 1. To study the influence of stochastic fields in solving problems with SUPG DC and 2. Get the solution of each expansion unknown variable. The results show the versatility of the method for solving different physical problems due to the generality of the statistical description of the solution and the richness in the representation of the areas where there is the greater variability in response. The patterns shown in the unknown uncertainty depends on the dynamics of diffusion, convective velocity and the type of solution used.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []