Design and investigation of surface addressable photonic crystal cavity confined band edge modes for quantum photonic devices

2011 
We propose to use a localized Γ-point slow Bloch mode in a 2D-Photonic Crystal (PC) membrane to realize an efficient surface emitting source. This device can be used as a quantum photonic device, e.g. a single photon source. The physical mechanisms to increase the Q/V factor and to improve the directivity of the PC microcavity rely on a fine tuning of the geometry in the three directions of space. The PC lateral mirrors are first engineered in order to optimize photons confinement. Then, the effect of a Bragg mirror below the 2DPC membrane is investigated in terms of out-of-plane leakages and far field emission pattern. This photonic heterostructure allows for a strong lateral confinement of photons, with a modal volume of a few (λ/n)3 and a Purcell factor up to 80, as calculated by two different numerical methods. We finally discuss the efficiency of the single photon source for different collection set-up.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    16
    Citations
    NaN
    KQI
    []