Characterization of transcriptional activity during ZGA in mammalian SCNT embryo.
2021
Developmental arrest of somatic cell nuclear transfer (SCNT) embryos first occurs at zygotic/embryonic genome activation (ZGA/EGA), which is critical for preimplantation development. However, study on transcriptome of SCNT embryos during ZGA/EGA is limited. In the present study, we performed RNA-seq of the 8-cell SCNT embryos in goat and provide cross-species analysis of transcriptional activity of SCNT embryos during ZGA/EGA in mice, human, bovine, and goat. RNA-seq data revealed 3966 differentially expressed genes (DEGs) failed to be reprogrammed or activated during EGA of SCNT embryos in goat. Series test of cluster analysis showed four clusters of DEGs and similar changes of the clusters in the four species. Specifically, genes in cluster 3 were somehow upregulated compared with the donor cells and the IVF embryo. Moreover, the histone methylation key players and N6-methyladenosine modifiers (SUV39H1, SETDB1, SETD2, KDM5B, IGF2BP1, and YTHDF2) were differentially expressed in SCNT embryos of all species. Finally, we identified three modules correlated with the development of SCNT embryos in mice and screened 288 genes (such as BTG4, WEE1, KLF3, and USP21) that are likely critical for SCNT reprogramming using weighted gene correlation network analysis. Our data will broaden the current understanding of transcriptome activity during stochastic reprogramming events and provide an excellent source for future studies.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
46
References
0
Citations
NaN
KQI