Theoretical Study on the Structure, Stability, and Electronic Properties of the Guanine−Zn−Cytosine Base Pair in M-DNA

2007 
M-DNA is a type of metalated DNA that forms at high pH and in the presence of Zn, Ni, and Co, with the metals placed in between each base pair, as in G−Zn−C. Experiments have found that M-DNA could be a promising candidate for a variety of nanotechnological applications, as it is speculated that the metal d-states enhance the conductivity, but controversy still clouds these findings. In this paper, we carry out a comprehensive ab initio study of eight G−Zn−C models in the gas phase to help discern the structure and electronic properties of Zn-DNA. Specifically, we study whether a model prefers to be planar and has electronic properties that correlate with Zn-DNA having a metallic-like conductivity. Out of all the studied models, there is only one which preserves its planarity upon full geometry optimization. Nevertheless, starting from this model, one can deduce a parallel Zn-DNA architecture only. This duplex would contain the imino proton, in contrast to what has been proposed experimentally. Among the ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    47
    Citations
    NaN
    KQI
    []