A catalytic triad is required by the non-heme haloperoxidases to perform halogenation☆

1995 
Abstract The bacterial non-heme haloperoxidases are highly related to an esterase from Pseudomonas fluorescens , at structural and functional levels. Both types of enzymes displayed brominating activity and esterase activity. The presence of the serine-hydrolase motif Gly-X-Ser-X-Gly, in the esterase as well as in all aligned haloperoxidase sequences, strongly suggested that they belong to the serine-hydrolase family. Sequence alignment with several serine-hydrolases and secondary structure superimposition revealed the striking conservation of structural features characterising the α/β-hydrolase fold structure in all haloperoxidases. These structural predictions allowed us to identify a potential catalytic triad in haloperoxidases, perfectly matching the triad of all aligned serine-hydrolases. The structurally equivalent triad in the chloroperoxidase CPO-P comprised the amino acids Serine 97, Aspartic acid 229 and Histidine 258. The involvement of this catalytic triad in halogenation was further assessed by inhibition studies and site-directed mutagenesis. Inactivation of CPO-P by PMSF and DEPC strongly suggested that the serine residue from the serine-hydrolase motif and an histidine residue are essential for halogenation, similar to that demonstrated for typical serine-hydrolases. By site-directed mutagenesis of CPO-P, Ser-97 was exchanged against alanine or cysteine, Asp-229 against alanine and His-258 against glutamine. Western blot analysis indicated that each mutant gene was efficiently expressed. Whereas the mutant S97C conserved a very low residual activity, each other mutant S97A, D229A or H258Q was totally inactive. This study gives the direct demonstration of the requirement of a catalytic triad in the halogenation mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    40
    Citations
    NaN
    KQI
    []