A Theoretical Study of the Aqueous Hydration of Canonical B d(CGCGAATTCGCG): Monte Carlo Simulation and Comparison with Crystallographic Ordered Water Sites

1989 
Abstract Monte Carlo computer simulation is described for the dodecamer d(CGCGAATTCGCG) together with 1777 water molecules at an environmental density of 1 gm/cc in a cubic cell under periodic boundary conditions. Water-water interactions were treated using the TIP4P potential and the solute water interactions by TIP4P spliced with the non-bonded interactions from the AMBER 3.0 force field. The simulation was subjected to proximity analysis to obtain solute coordination numbers and pair interaction energies for each solute atom. Hydration density distributions partitioned into contributions from the major groove side, the minor groove side and the sugar-phosphate backbone were examined, and the probabilities of occurence for one- and two-water bridges in the simulation were enumerated. The results were compared with observations of crystallographic ordered water sites from x-ray diffraction studies on the native dodecamer by Dickerson and coworkers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    94
    References
    35
    Citations
    NaN
    KQI
    []