How predictable is the climate and how can we use it in managing cropping risks

2004 
Our increasing understanding of the underlaying mechanisms responsible for climate variability and change means that some of these impacts are now predictable, although the extend of predictability remains hotly debated amongst scientists. Decision influenced by climate knowledge need to be made at a range of time scales, hence climate research efforts are directed towards investigating phenomena such as the Madden-Julian Oscillation (MJO; 30-60 days), El Nino - Southern Oscillation (ENSO) related variability (2 - 10 years), decadal / multi-decadal climate variability and climate change. The challenge is to further increase our understanding of causes and consequences of climate variability and change to achieve two key outcomes: a) policies suitable for multi-goal objectives resulting in rapid and substantial societal benefits and b) risk management strategies that reduce vulnerability for individuals and businesses. Farm risk management needs to be seen within the wider societal context: Decisions made at a point in the landscape have implications downstream. Hence, environmental and societal risks (e.g. run-off, drainage, erosion, salinity, nutrient / pesticide movements, health impacts, employment etc) need to be considered and quantified. This requires the ability to effectively consider multi-goal objectives through the evaluation of alternative action outcomes. In this context, quantitative agricultural systems analysis via systems simulation models is an essential tool to provide objective information on which to base such decisions. In order to address issues of climate variability and change, these agricultural systems models require environmental input data – and specifically climate data – that reflects the current state of play in climate science. Statistical climate forecasts as well as forecasts based on coupled ocean/atmosphere models (GCMs) will play an increasingly important role in agricultural risk management. Media Summary Probabilistic forecasts of climate variability ranging from inter-seasonal to climate change can assist in multi-goal decision-making, leading to better agricultural policies and on-farm risk management.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    5
    Citations
    NaN
    KQI
    []