Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis

1994 
Green plants use the xanthophyll cycle to regulate the flow of energy to chlorophylla within photosynthetic proteins. Under conditions of low light intensity violaxanthin, a carotenoid possessing nine conjugated double bonds, functions as an antenna pigment by transferring energy from its lowest excited singlet state to that of chlorophylla within light-harvesting proteins. When the light intensity increases, violaxanthin is biochemically transformed into zeaxanthin, a carotenoid that possesses eleven conjugated double bonds. The results presented here show that extension of the ⧄ conjugation of the polyene lowers the energy of the lowest excited singlet state of the carotenoid below that of chlorophylla. As a consequence zeaxanthin can act as a trap for the excess excitation energy on chlorophylla pigments within the protein, thus regulating the flow of energy within photosynthetic light-harvesting proteins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    354
    Citations
    NaN
    KQI
    []