Cortico-muscular coupling in a patient with postural myoclonus.

2004 
Abstract We investigated the cortico-muscular coherence in a patient with posturally induced cortically originating negative myoclonus. We recorded simultaneously 50 channels EEG and EMG from quadriceps and biceps femoris muscles of the left upper leg. Three experimental conditions were investigated with the patient in a seated position: (i) recording during rest (Rest), (ii) recording while the patient had to hold his left leg horizontally stretched out (Postural), and (iii) recording while the patient had to hold his left leg horizontally stretched out against a vertical force (Postural against force). Coherence, phase difference and cumulant density were computed as indicators for cortico-muscular coupling. The cortical component preceding the silent period was shown by averaging and was reconstructed. During postural and postural against force conditions, the EEG over the vertex was significantly coherent with EMG, in alpha (7–15 Hz) and beta range (15–30 Hz). The strongest coherence peak was at 21 Hz. No high-frequency coherence was observed. The phase difference and the cumulant density estimate corresponded to a 32 ms time lag between motor cortex and muscles, with EEG leading. The broadening of the coherence spectrum at which the motor cortex drives the muscles together with the excessive coherence levels and the giant SEP could reflect the hyperexcitability of the sensorimotor cortex. The frequency content of the coherence may be characteristic for this type of myoclonus. The results lend support to the view that the frequency analysis may have some diagnostic potential in cortical myoclonus.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    8
    Citations
    NaN
    KQI
    []