Novel solvent-controlled chemoselective palladium/copper(II) halide catalyzed oligomerization of tert-butyl acetylene

2007 
Solvent-controlled chemoselective palladium-catalyzed oligomerization of tert-butyl acetylene is reported in this paper. The reaction was carried out smoothly in benzene/n-BuOH binary solvent system. When unpolar aprotic benzene was the preponderating component in the binary system, a cyclotrimerization process occurred to produce 1,3,5-tri-tert-butylbenzene via a mechanism of three acetylene molecules, inserted step by step, forming σ-butadienyl-Pd and σ-hexatrienyl-Pd intermediates. While when the polar, protic and strong coordinating component n-BuOH, which aids Cu(II) to cleave the C-Pd σ-bonds and solvate Pd(II), Cu(II) cations, halo anion, σ-butadienyl-Pd intermediate, etc., was increased to a certain extent in the binary solvent system, the reaction proceeded readily via a n-BuOH-promoted mechanism to give (3Z,5Z)-2,2,7,7-tetramethyl-3,6-dichloro-3,5-octadiene or (3Z,5Z)-2,2,7,7-tetramethyl-3,6-dibromo-3,5-octadiene, respectively. Possible weak hydrogen bonds and n-π weak force between n-BuOH (electron pair donor (EPD)) and tert-butyl acetylene (and σ-butadienyl-Pd intermediate, electron pair acceptor (EPA)) in the latter process were also in favor of the n-BuOH promoted pathway. Meanwhile, the coupling product 2,2,7,7-tetramethyl-3,5-octadiyne was exclusively obtained when the reaction was conducted in singular polar H2O. Influences of the solvent, catalysts, as well as possible mechanism were discussed in this paper.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    1
    Citations
    NaN
    KQI
    []