Tunneling barrier in nanoparticle junctions of La2/3(Ca,Sr)1/3MnO3: Nonlinear current–voltage characteristics

2003 
We study the nonlinear current–voltage (I–V) characteristics and analyze the voltage-dependent tunneling conductance in nanoparticles of La2/3A1/3MnO3 (A=Ca, Sr). The powders were prepared by different wet-chemical routes and low calcination temperatures were used to obtain an average particle size D≈30 nm. The data are comprehensively explained in terms of the tunneling picture, which allows one to estimate the height of the grain boundary insulating barrier (φ) for each sample. For constant D, our results show that the sample preparation route is mainly responsible for the value of φ in nanoparticles, while the Coulomb gap in the Coulomb blockade regime is ∼3 times higher for Sr- than for Ca-doping. We also show that a small fraction of the barriers contribute to the nonlinear transport, and the current is mainly carried through low-resistive percolated paths. In addition, despite the different barrier strengths, the low-field magnetoresistance (LFMR) is similar for all samples, implying that φ is not t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    20
    Citations
    NaN
    KQI
    []