Dynamic Power Integrity Control of ATE for Eliminating Overkills and Underkills in Device Testing

2016 
This paper proposes a power integrity control technique for dynamically controlling power supply voltage fluctuations for a device under test (DUT), and demonstrates its effectiveness for eliminating the overkills/underkills due to the difference of power supply impedance between an automatic test equipment (ATE) and a practical operating environment of the DUT. The proposed method injects compensation currents into the power supply nodes on the ATE system in a feed-forward manner such that the ATE power supply waveform matches with the one on the customer's operating environment of the DUT. A method for calculating the compensation current is also described. Experimental results show that the proposed method can emulate the power supply voltage waveform under a customer's operating condition and eliminate 95 % of overkills/underkills in the maximum operating frequency testing with 105 real silicon devices. Limitations and applications of the proposed method are also discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    0
    Citations
    NaN
    KQI
    []