Transient hot electron dynamics in single-layer TaS2

2019 
Using time- and angle-resolved photoemission spectroscopy, we study the response of metallic single layer TaS$_2$ in the 1H structural modification to the generation of excited carriers by a femtosecond laser pulse. A complex interplay of band structure modifications and electronic temperature increase is observed and analyzed by direct fits of model spectral functions to the two-dimensional (energy and $k$-dependent) photoemission data. Upon excitation, the partially occupied valence band is found to shift to higher binding energies by up to 150 meV, accompanied by electronic temperatures exceeding 3000~K. These observations are explained by a combination of temperature-induced shifts of the chemical potential, as well as temperature-induced changes in static screening. Both contributions are evaluated in a semi-empirical tight-binding model. The shift resulting from a change in the chemical potential is found to be dominant.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    5
    Citations
    NaN
    KQI
    []