Ionization and transient absorption control with a resonant attosecond clock

2014 
Metastable states are important actors in the ionisation of atoms and molecules. Sub-femtosecond extreme ultraviolet pulses can coherently populate several transiently bound states at once, thus starting the attosecond clocks which are required to monitor and control ultrafast electronic evolution above the ionisation threshold. Here we illustrate, from a theoretical point of view, the effects coherent superpositions of 1Po doubly excited states in the helium atom have on channel-resolved photoelectron spectra as well as on the transient absorption spectrum of the atom in the extreme ultraviolet region, when they are created by a single-attosecond pulse in the presence of a strong few-cycle near-infrared/visible pulse which acts as a probe. Interference fringes varying rapidly with the pump-probe time delay are visible in both photoelectron and transient absorption spectra. From such fringes, the wave packet itself can conceivably be reconstructed. Conversely, all observables are modulated by the characteristic beating periods of the wave packet, so that control of partial ionisation yields, branching ratios, and light absorption or amplification can be achieved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []