Clonal dynamics of haematopoiesis across the human lifespan

2021 
Age-related change in human haematopoiesis causes reduced regenerative capacity1, cytopenias2, immune dysfunction3 and increased risk of blood cancer. The cellular alterations that underpin the abruptness of this functional decline after the age of 70 years remain elusive. We sequenced 3579 genomes from single-cell-derived colonies of haematopoietic stem cell/multipotent progenitors (HSC/MPPs) across 10 haematologically normal subjects aged 0-81 years. HSC/MPPs accumulated 17 mutations/year after birth and lost 30bp/year of telomere length. Haematopoiesis in adults aged 75 showed profoundly decreased clonal diversity. In each elderly subject, 30-60% of haematopoiesis was accounted for by 12-18 independent clones, each contributing 1-34% of blood production. Most clones had begun their expansion before age 40, but only 22% had known driver mutations. Genome-wide selection analysis estimated that 1/34 to 1/12 non-synonymous mutations were drivers, occurring at a constant rate throughout life, affecting a wider pool of genes than identified in blood cancers. Loss of Y chromosome conferred selective benefits on HSC/MPPs in males. Simulations from a simple model of haematopoiesis, with constant HSC population size and constant acquisition of driver mutations conferring moderate fitness benefits, entirely explained the abrupt change in clonal structure in the elderly. Rapidly decreasing clonal diversity is a universal feature of haematopoiesis in aged humans, underpinned by pervasive positive selection acting on many more genes than currently identified.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    3
    Citations
    NaN
    KQI
    []