Numerical Study of Geometric Parameters Effect on Rapid Heat Cycle Molding Process

2017 
A 3D numerical study of thermal regulation system of Rapid Heat Cycle Molding (RHCM) process producing smartphone cover has been undertaken. In order to succeed an RHCM operation, so as to improve the part quality and the process productivity, heating/cooling channels design is of great importance. For this purpose, we propose in this study the optimization of geometric parameters of heating/cooling channels. The concerned geometric parameters are heating/cooling channel diameter, distance between two successive channel and distance channel–cavity surface. The thermal behaviors in mold and polymer domains are predicted by the commercial Finite Volume Analysis software Fluent 6.3.26 in cyclic transient regime. It was shown that a regular state is reached rapidly, since the second molding cycle. Thermal responses have shown that increasing heating/cooling channels diameter promotes the RHCM process productivity, but, at the same time, generates an uneven temperature distribution and consumes a significant energy. With regards to heating/cooling channels spacing, it has been demonstrated the advantage of increasing the distance between two consecutive channels. However, increasing the distance channel–cavity surface contributes to balance the temperature distribution at the cavity surface, but it affects the RHCM process productivity by increasing the molding cycle time.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []