Vibrational Strong Coupling in Subwavelength Nanogap Patch Antenna at the Single Resonator Level

2021 
Vibrational strong coupling (VSC) between a vacuum field and molecules in a cavity offers promising applications in cavity-modified chemical reactions and ultrasensitive vibrational spectroscopy. At present, in order to realize VSC, bulky microcavities with large mode volume are utilized, which limits their potential applications at the nanoscale. Here, we report on the experimental realization of strong coupling between molecular vibrations and infrared photons confined within a deeply subwavelength nanogap patch antenna cavity. Our system exhibits a characteristic anticrossing dispersion, indicating a Rabi splitting of 108 cm-1 at the single resonator level with excellent angular insensitivity. The numerical simulations and theoretical analyses quantitatively reveal that the strength of coupling depends on the cavity field-molecule overlap integral and the image charge effect. VSC at the single nanogap patch antenna level paves the way for molecular-scale chemistry, ultrasensitive biosensors, and the development of ultralow-power all-optical devices in the mid-infrared spectral range.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    3
    Citations
    NaN
    KQI
    []