A round robin on room acoustical simulation and auralization

2019 
A round robin was conducted to evaluate the state of the art of room acoustic modeling software both in the physical and perceptual realms. The test was based on six acoustic scenes highlighting specific acoustic phenomena and for three complex, “real-world” spatial environments. The results demonstrate that most present simulation algorithms generate obvious model errors once the assumptions of geometrical acoustics are no longer met. As a consequence, they are neither able to provide a reliable pattern of early reflections nor do they provide a reliable prediction of room acoustic parameters outside a medium frequency range. In the perceptual domain, the algorithms under test could generate mostly plausible but not authentic auralizations, i.e., the difference between simulated and measured impulse responses of the same scene was always clearly audible. Most relevant for this perceptual difference are deviations in tone color and source position between measurement and simulation, which to a large extent can be traced back to the simplified use of random incidence absorption and scattering coefficients and shortcomings in the simulation of early reflections due to the missing or insufficient modeling of diffraction.A round robin was conducted to evaluate the state of the art of room acoustic modeling software both in the physical and perceptual realms. The test was based on six acoustic scenes highlighting specific acoustic phenomena and for three complex, “real-world” spatial environments. The results demonstrate that most present simulation algorithms generate obvious model errors once the assumptions of geometrical acoustics are no longer met. As a consequence, they are neither able to provide a reliable pattern of early reflections nor do they provide a reliable prediction of room acoustic parameters outside a medium frequency range. In the perceptual domain, the algorithms under test could generate mostly plausible but not authentic auralizations, i.e., the difference between simulated and measured impulse responses of the same scene was always clearly audible. Most relevant for this perceptual difference are deviations in tone color and source position between measurement and simulation, which to a large exten...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    27
    Citations
    NaN
    KQI
    []