Surgical management of pediatric rolandic arteriovenous malformations: a single-center case series

2020 
Objective Pediatric rolandic arteriovenous malformations (AVMs) present a treatment challenge given the lifetime risk of hemorrhage, rehemorrhage, and associated long-term morbidity. Microsurgical resection has been recommended as the optimal treatment for AVMs in general, but there is no dedicated literature on the outcomes of resection of pediatric rolandic AVMs. Here, the study objective was to review the outcomes of microsurgical resection of pediatric rolandic AVMs in the modern era, together with the utilization of surgical adjuncts including navigation, intraoperative angiography, and neurophysiological monitoring. Methods The authors performed a retrospective review of patients 18 years of age and younger with cerebral AVMs microsurgically treated between January 2000 and May 2016 at The Hospital for Sick Children. Only those patients with an AVM whose nidus was located within the rolandic region were analyzed. A descriptive analysis was performed to identify patient demographics, preoperative AVM characteristics, and postoperative obliteration rates and neurological complications. Results A total of 279 AVMs were evaluated in the study period. Twenty-three of these AVMs were rolandic, and the median age in the 11 microsurgically treated cases was 11 years (range 1-17 years). AVM hemorrhage was the most common presentation, occurring in 8 patients (73%). Lesions were either Spetzler-Martin grade II (n = 8, 73%) or grade III (n = 3, 27%). The postoperative obliteration rate of AVMs was 100%. The mean imaging follow-up duration was 33 months (range 5-164 months). There was no documented recurrence of an AVM during follow-up. One patient developed a transient postoperative hemiparesis, while another patient developed right fingertip hyperesthesia. Conclusions Microsurgical resection of rolandic pediatric AVMs yields excellent AVM obliteration with minimal neurological morbidity in selected patients. The incorporation of surgical adjuncts, including neurophysiological monitoring and neuronavigation, allows accurate demarcation of functional cortex and enables effective resection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    1
    Citations
    NaN
    KQI
    []