Optimization of spatial statistical approaches to identify land use/land cover change hot spots of Pune region of Maharashtra using remote sensing and GIS techniques

2017 
AbstractThis study investigated land use/land cover change (LULCC) dynamics using temporal satellite images and spatial statistical cluster analysis approaches in order to identify potential LULCC hot spots in the Pune region. LULCC hot spot classes defined as new, progressive and non-progressive were derived from Gi* scores. Results indicate that progressive hot spots have experienced high growth in terms of urban built-up areas (20.67% in 1972–1992 and 19.44% in 1992–2012), industrial areas (0.73% in 1972–1992 and 3.46% in 1992–2012) and fallow lands (4.35% in 1972–1992 and −6.38% in 1992–2012). It was also noticed that about 28.26% of areas near the city were identified as new hot spots after 1992. Hence, non-significant change areas were identified as non-progressive after 1992. The study demonstrated that LULCC hot spot mapping through the integrated spatial statistical approach was an effective approach for analysing the direction, rate, spatial pattern and spatial relationship of LULCC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    6
    Citations
    NaN
    KQI
    []