Comparison of proteins involved in chondroitin sulfate utilization by three colonic Bacteroides species.
1986
Abstract
Three species of colonic bacteria can ferment the mucopolysaccharide chondroitin sulfate: Bacteroides ovatus, Bacteroides sp. strain 3452A (an unnamed DNA homology group), and B. thetaiotaomicron. Proteins associated with the utilization of chondroitin sulfate by B. thetaiotaomicron have been characterized previously. In this report we compare chondroitin lyases and chondroitin sulfate-associated outer membrane polypeptides of B. ovatus and Bacteroides sp. strain 3452A with those of B. thetaiotaomicron. All three species produce two soluble cell-associated chondroitin lyases, chondroitin lyase I and II. Purified enzymes from the three species have similar pH optima, Km values, and molecular weights. However, peptide mapping experiments show that the chondroitin lyases from B. ovatus and Bacteroides sp. strain 3452A are not identical to those of B. thetaiotaomicron. A cloned gene that codes for the chondroitin lyase II from B. thetaiotaomicron hybridized on a Southern blot with DNA from B. ovatus or Bacteroides sp. strain 3452A only when low-stringency conditions were used. Antibody to chondroitin lyase II from B. thetaiotaomicron did not cross-react with chondroitin lyase II from B. ovatus or Bacteroides sp. strain 3452A. Chondroitin lyase activity in all three species was inducible by chondroitin sulfate. B. ovatus and Bacteroides sp. strain 3452A, like B. thetaiotaomicron, have outer membrane polypeptides that appear to be regulated by chondroitin sulfate, but the chondroitin sulfate-associated outer membrane polypeptides differ in molecular weight. Despite these differences, the ability of intact bacteria to utilize chondroitin sulfate, as indicated by growth yields in carbohydrate-limited continuous culture and the rate at which the chondroitin lyases were induced, was the same for all three species.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
16
References
10
Citations
NaN
KQI