WALES: water vapour lidar experiment in space

2017 
The WAter vapour Lidar Experiment in Space (WALES) mission aims at providing water vapour profiles with high accuracy and vertical resolution through the troposphere and the lower stratosphere on a global scale using an instrument based on Differential Absorption Lidar (DIAL) observation technique, and mounted on an Earth orbiting satellite. This active DIAL technique will also provide data on the cloud coverage by means of the signal reflection on the cloud layers. In DIAL operation, backscatter lidar signals at two wavelengths - at least - are detected. One wavelength (λ ON) is highly absorbed by the species of interest, while the other (λ OFF) is backscattered with minimal absorption. This difference in absorption at the two transmitted wavelengths leads to the determination of the concentration of the species of interest. The DIAL is therefore a dual-wavelength lidar in which the signals detected at the two wavelengths are processed to extract the absolute density of water vapour. The Phase A study performed by ALCATEL Space and their partners under contract of the European Space Agency has led to a credible and innovative concept of instrument, based on a mission performance modelling. The challenge is to foster the scientific return while minimising the development risks and costs of instrument development, in particular the laser transmitter. The paper describes the payload design and the implementation on a low Earth orbiting (LEO) satellite.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    5
    Citations
    NaN
    KQI
    []