Modeling and NVH Analysis of a Full Engine Dynamic Model with Valve Train System

2020 
The valve train system is an important source of vibration and noise in an engine. An in-depth study on the dynamic model of the valve train is helpful in understanding the dynamic characteristics of the valve train and improving the prediction accuracy of vibration and noise. In the traditional approaches of the dynamic analyses, the simulations of the valve train system and the engine are carried out separately. The disadvantages of these uncoupled approaches are that the impact of the cylinder head deformation to the valve train and the support and constraints of the valve train on the cylinder head are not taken into consideration. In this study, a full engine dynamic model coupled with a valve train system is established and a dynamic simulation and noise vibration harshness (NVH) analysis are carried out. In the coupled approach, the valve train system is simulated simultaneously with the engine, and the complexity of the model has been greatly increased. Compared with the uncoupled approach, more detailed dynamic results of the valve train can be presented, and the subsequent predictions of vibration and noise can also be more accurate. The acoustic results show that the difference from the experimental sound power level is reduced from 1.8 dB(A) to 0.9 dB(A) after applying the coupled approach.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    1
    Citations
    NaN
    KQI
    []