Measurement of the Fundamental Parameters for the Film-Rupture/Oxidation Mechanism

1999 
Identification of the mechanism responsible for primary water stress corrosion cracking (PWSCC) in nickel-base alloys is a controversial topic. Numerous mechanisms, including the film-rupture/oxidation (i.e., slip-oxidation or slip-dissolution) mechanism, have been proposed to explain PWSCC. According to this mechanism, the observed sensitivity of PWSCC to material and environmental factors may be explained by the combined effects of repassivation kinetics, oxide rupture strain, and crack tip strain rate (which includes creep). Previous research has shown that increasing the Cr content of Ni-9%Fe-Cr from 16 to 30 wt% strongly decreases PWSCC susceptibility. Consequently, measurements of these three fundamental parameters (repassivation, oxide rupture, and creep) were performed as a function of Cr content, and SCC crack growth rates were predicted on the basis of the resulting data. This paper illustrates that considering these three parameters concurrently may contribute to the understanding of Cr effects on PWSCC of Ni-base alloys. However, it is not clear whether the film-rupture/oxidation mechanism can adequately predict the observed crack growth rates for Alloy 600 at 338 C.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []