Enhancing directed collective motion of self-propelled particles in confined channel.

2021 
The collective transport of the self-propelled rods (SPRs) is studied by dissipative particle dynamics simulations. Two types of channels (channel I and channel II) are taken into account for various rod concentrations. It is found that in channel I-the asymmetric corrugated channel with periodically varying width, some SPRs are trapped at the corners and form the hedgehog clusters. Other SPRs aggregate at the bottleneck and lead to a traffic jam. Consequently, channel I is inefficient for the directional SPR transport in the case of finite concentration. To achieve efficient collective particle transport, channel II-the channel with constant width and arrays of asymmetric obstacles within it, which can avoid the traffic clogging and hedgehog aggregate is suggested. It is found that the swimmer-obstacle interaction gives rise to the directional motion, the spacing between obstacles can avoid the formation of the hedgehog clusters. The high-efficiency directional collective motion of the SPRs is acquired in channel II. Overall, our simulation study offers an efficient approach for directional collective motion of SPRs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    0
    Citations
    NaN
    KQI
    []