Design and experimental research on key pressure subsystems of underwater glider

2014 
In order to develop a 200 m depth underwater glider, the development details of the pressure hull and ballast system of the underwater glider were presented, including the design methods, simulation analysis and pressure tests. Conventional yield and buckling criteria was used to size the hull, with which the material and wall thickness were determined by comparison calculation. Stress distribution and deformation of the designed hull was analyzed with finite element simulation. Pressure test in hyperbaric chamber validated the strength and sealability of the hull. Ballast system changes the volume of an external bladder by inflating or deflating oil to modulate the net wight of underwater glider. AMESim simulation validated the feasibility of the system. A special kind of pressure test was designed to examine the performance of the ballast system, with which the optimal-efficiency speed of motor was obtained and the response capability of ballast system was investigated at this speed under different pressures. The ballast system is characterized as accurate buoyancy adjustment, reliable operation and compact structure. The two subsystems functioned well and had reliable performance during pressure tests, which provided a powerful guarantee for the development of the whole underwater glider.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []