Comparison and Analysis of Natural Laminar Flow Airfoil Shape Optimization Results at Transonic Regime with Bumps and Trailing Edge Devices Solved by Pareto Games and EAs

2021 
The transonic natural laminar flow wing will become an important feature of the next generation advanced civil transport aircraft, because it can greatly reduce the friction drag. In paper Tang et al. (Arch Computat Meth Eng 26:119–141, 2019) and Chen et al. (J Nanjing Univ Aeronaut Astron, 50(4):548–557, 2018), the problem of wave drag increase due to the expansion of laminar flow region in the optimization design of natural laminar airfoil is studied with Pareto game and EAs by using Shock Control Bump (SCB) and Trailing Edge Device (TED) respectively. In this paper, the numerical implementation of SCB and TED in the shape design optimization of natural laminar airfoils and the performance differences of the final optimal airfoil are compared and analyzed. The feasibility and potential of applying them to the optimization design of three-dimensional laminar wing are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    0
    Citations
    NaN
    KQI
    []