Degradation of chloroanilines by toluene dioxygenase from Pseudomonas putida T57

2014 
In this study, we investigated the ability of Pseudomonas putida toluene dioxygenase to oxidize chloroanilines. Toluene-induced P. putida T57 cells degraded 4-chloroaniline (4CA) more rapidly than toluene-non-induced cells, suggesting that toluene dioxygenase pathway was involved in 4CA degradation. Escherichia coli harboring P. putida T57 genes encoding toluene dioxygenase complex ( todC1C2BA ) showed 4CA degradation activity, demonstrating that toluene dioxygenase oxidizes 4CA. Thin-layer chromatography (TLC) and mass spectrometry (MS) analyses identified 4-chlorocatechol and 2-amino-5-chlorophenol as reaction products, suggesting that toluene dioxygenase catalyzes both 1,2- and 2,3-dioxygenation of 4CA. A plasmid containing the entire tod operon ( todC1C2BADE ) was introduced to P. putida T57 to enhance its ability to degrade 4CA. Resulting P. putida T57 (pHK-C1C2BADE) showed 250-fold higher 4CA degradation activity than P. putida T57 parental strain. P. putida T57 (pHK-C1C2BADE) degraded 2-chloroaniline (2CA), 3-chloroaniline (3CA), and 3,4-dichloroaniline (34DCA) as well as 4CA, but not 3,5-dichloroaniline (35DCA). The order of the degradation rate was: 4CA > 3CA > 2CA > 34DCA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    20
    Citations
    NaN
    KQI
    []