Nature of Halide–Water Interactions: Insights from Many-Body Representations and Density Functional Theory

2019 
Interaction energies of halide–water dimers, X–(H2O), and trimers, X–(H2O)2, with X = F, Cl, Br, and I, are investigated using various many-body models and exchange correlation functionals selected across the hierarchy of density functional theory (DFT) approximations. Analysis of the results obtained with the many-body models demonstrates the need to capture important close-range interactions in the regime of large intermolecular orbital overlap, such as charge transfer and charge penetration. Failure to reproduce these effects can lead to large deviations relative to reference data calculated at the coupled cluster level of theory. Decompositions of interaction energies carried out with the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method demonstrate that permanent and inductive electrostatic energies are accurately reproduced by all classes of XC functionals (from generalized gradient corrected (GGA) to hybrid and range-separated hybrid functionals), while signific...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    125
    References
    14
    Citations
    NaN
    KQI
    []