Optimization of dense matrix multiplication on IBM cyclops-64: challenges and experiences

2006 
This paper presents a study of performance optimization of dense matrix multiplication on IBM Cyclops-64(C64) chip architecture. Although much has been published on how to optimize dense matrix applications on shared memory architecture with multi-level caches, little has been reported on the applicability of the existing methods to the new generation of multi-core architectures like C64. For such architectures a more economical use of on-chip storage resources appears to discourage the use of caches, while providing tremendous on-chip memory bandwidth per storage area. This paper presents an in-depth case study of a collection of well known optimization methods and tries to re-engineer them to address the new challenges and opportunities provided by this emerging class of multi-core chip architectures. Our study demonstrates that efficiently exploiting the memory hierarchy is the key to achieving good performance. The main contributions of this paper include: (a) identifying a set of key optimizations for C64-like architectures, and (b) exploring a practical order of the optimizations, which yields good performance for applications like matrix multiplication.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    31
    Citations
    NaN
    KQI
    []