Modelling and kinetic aspects of a BTEX contaminated air-treating biofilter
2012
In this study, the overall performance of a biofilter was evaluated in terms of its elimination capacity by using 3-D mesh techniques. The overall results indicate that the agreement between experimental data and model predictions is excellent for benzene, toluene, ethylbenzene and o-xylene (BTEX). In this study, the maximum removal rate (r max) values for BTEX were 0.0117, 0.0126, 0.0081 and 0.0146 g m–3 h–1, and the half-saturation constant (KS ) values were calculated to be 0.269, 0.297, 0.156 and 0.394 g m–3, respectively. For this system, the coefficients of determination (r 2) of BTEX compounds were greater than 0.97. The BTEX concentration profiles along the depth were also determined using a convection–diffusion reactor (CDR) model. The sums of squares of the errors (SSEs) of BTEX were 0.0078, 0.0059, 0.0129 and 0.0269, respectively, with r 2 values greater than 0.99 for all four compounds at low concentrations.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
32
References
3
Citations
NaN
KQI