Applications of the Medipix3-CT in combination with iterative reconstruction techniques

2016 
The pixelated semiconductor detectors of the Medipix family with their photon-counting abilities offer the possibility of high quality X-ray radiography as well as computed tomography. The generated signal from each photon is amplified and shaped before it is compared to an energy threshold. For a photon with an energy above the threshold the counter is incremented by one count. Photons below the operator-defined threshold do not increment the counter and therefore do not participate in the image formation. Furthermore, compared to other detectors like scintillators, an additional conversion step is dispensed due to the direct converting nature of photon-counting detectors, leading to a higher signal-to-noise-ratio. Additionally, the photon processing capabilities of photon-counting detectors allow photons to be weighted equally and not proportional to their energy as it is the case for charge integrating devices, where high energy photons are weighted stronger than low energy photons. Compared to integrating devices, this leads to an increase in contrast for images of both high and low contrast objects, hence improve object information. The use of photon-counting detectors in combination with iterative reconstruction techniques based on OSEM (ordered subset expectation maximization) algorithms is the basis of our computed tomography scans for material analysis. Due to its ability to operate with highly undersampled data sets, iterative reconstruction offers the possibility to decrease dose in CT scans. In order to identify the limits of the data set reduction, a first series of scans was performed to test, under real conditions, the CT-image quality when a strongly reduced amount of projections is used for reconstruction. In addition, the effect of a total variation minimization tool on these undersampled data sets was evaluated. Furthermore, this paper includes a number of recent CT-results with scans performed at two different setups within our facility.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    2
    Citations
    NaN
    KQI
    []