Fuzzy Static Output Control of T-S Fuzzy Stochastic Systems via Line Integral Lyapunov Function

2021 
Considering some unmeasurable states, a fuzzy static output control problem of nonlinear stochastic systems is discussed in this paper. Based on a modelling approach, a Takagi–Sugeno (T–S) fuzzy system, constructed by a family of stochastic differential equations and membership functions, is applied to represent nonlinear stochastic systems. Parallel distributed compensation (PDC) technology is used to construct the static output controller. A line-integral Lyapunov function (LILF) is used to derive some sufficient conditions for guaranteeing the asymptotical stability in the mean square. From the LILF, a potential conservatism produced by the derivative of the membership function is eliminated to increase the relaxation of sufficient conditions. Furthermore, those conditions are transferred into linear matrix inequality (LMI) form via projection lemma. According to the convex optimization algorithm, the feasible solutions are directly obtained to establish the static output fuzzy controller. Finally, a numerical example is applied to demonstrate the effectiveness and usefulness of the proposed design method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    2
    Citations
    NaN
    KQI
    []