Modelling HIV/AIDS Cases in Zambia: A Comparative Study of the Impact of Mandatory HIV Testing

2021 
In this study, a time series modeling approach is used to determine an ARIMA model and advance counterfactual forecasting at a point of policy intervention. We consider monthly data of HIV/AIDS cases from the Ministry of Health (Copperbelt province) of Zambia, for the period 2010 to 2019 and have a total of 120 observations. Results indicate that ARIMA (1, 0, 0) is an adequate model which best fits the HIV/AIDS time series data and is, therefore, suitable for forecasting cases. The model predicts a reduction from an average of 3500 to 3177 representing 14.29% in HIV/AIDS cases from 2017 (year of policy activation) to 2019, but the actual recorded cases dropped from 3500 to 1514 accounting for 57.4% in the same time frame.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    0
    Citations
    NaN
    KQI
    []