Transgenic lines of Begonia maculata generated by ectopic expression of PttKN1

2011 
KNOX (KNOTTED1-like homeobox) genes encode homeodomain-containing transcription factors which play crucial roles in meristem maintenance and proper patterning of organ initiation. PttKN1 gene, isolated from the vascular cambium of hybrid aspen (Populus tremula × P. tremuloides), is a member of class I KNOX gene family. In order to understand the roles of PttKN1 gene in meristem activity and morphogenesis as well as to explore the possibility to generate novel ornamental lines via its ectopic expression, it was introduced into the genome of Begonia maculata Raddi by Agrobacterium tumefasciens-mediated gene transformation here. Four types of transgenic plants were observed, namely coral-like (CL) type, ectopic foliole (EF) type, phyllotaxy-irregular (IP) type and cup-shaped (CS) type, which were remarkably different from corresponding wild type and were not also observed in the regenerated plantlets of wild type plant. Among these four types of transgenic plants, the phenotype of coral-like was observed for the first time in the transformants ectopically expressed KNOX genes. The observation of scanning electron microscope (SEM) showed ectopic meristems on the adaxial leaf surface of the transformants. Interestingly, the plantlets with ectopic foliole could generate new ectopic folioles from the original ectopic folioles again, and the plants regenerated from the EF-type transformants could also maintain the original morphology. The same specific RT-PCR band of the four types of transgenic plantlets showed that PttKN1 was ectopically expressed. All these data demonstrated that the ectopic expression of PttKN1 caused a series of alterations in morphology which provided possibilities producing novel ornamental lines and that PttKN1 played important roles in meristem initiation, maintenance and organogenesis events as other class I KNOX genes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    4
    Citations
    NaN
    KQI
    []