Efficacy of high-intensity interval- or continuous aerobic-training on insulin resistance and muscle function in adults with metabolic syndrome: a clinical trial.

2021 
We carried out a randomized, clinical trial in adults of both sexes with metabolic syndrome (MS) to assess the efficacy of high-intensity, low-volume interval training (HIIT) compared to moderate-intensity continuous training (MICT) on insulin resistance (IR), muscle mass, muscle activation, and serum musclin. Fasting glycemia, insulinemia, and glycated haemoglobin were determined by conventional methods, IR by Homeostatic model assessment (HOMA), lean mass by Dual-Energy X-ray Absorptiometry, muscle activation through carnosine by Proton Magnetic Resonance Spectroscopy, and musclin by Enzyme-Linked ImmunoSorbent Assay before and after a supervised, three-times/week, 12-week treadmill programme. HIIT (n = 29) consisted of six intervals with one-minute, high-intensity phases at 90% of peak oxygen consumption (VO2peak). MICT (n = 31) trained at 60% of VO2peak for 30 min. Patients had a mean age of 50.8 ± 6.0 years, body mass index of 30.6 ± 4.0 kg/m2, and VO2peak of 29.0 ± 6.3 mL.kg−1.min−1. Compared to MICT, HIIT was not superior at reducing Ln HOMA-IR (adjusted mean difference: 0.083 [95%CI − 0.092 to 0.257]), carnosine or musclin or at increasing thigh lean mass. HIIT increased carnosine by 0.66 mmol/kg.ww (95% CI 0.08–1.24) after intervention. Both interventions reduced IR, body fat percentage and increased total lean mass/height2 and VO2peak. Musclin showed a non-significant reduction with a small effect size after both interventions. Compared to MICT, HIIT is not superior at reducing IR, carnosine or musclin or at increasing skeletal muscle mass in adults with MS. Both training types improved IR, muscle mass and body composition. NCT03087721, March 22nd, 2017. NCT03087721. Registered March 22nd, 2017.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    0
    Citations
    NaN
    KQI
    []